Filoviral Immune Evasion Mechanisms
نویسندگان
چکیده
The Filoviridae family of viruses, which includes the genera Ebolavirus (EBOV) and Marburgvirus (MARV), causes severe and often times lethal hemorrhagic fever in humans. Filoviral infections are associated with ineffective innate antiviral responses as a result of virally encoded immune antagonists, which render the host incapable of mounting effective innate or adaptive immune responses. The Type I interferon (IFN) response is critical for establishing an antiviral state in the host cell and subsequent activation of the adaptive immune responses. Several filoviral encoded components target Type I IFN responses, and this innate immune suppression is important for viral replication and pathogenesis. For example, EBOV VP35 inhibits the phosphorylation of IRF-3/7 by the TBK-1/IKKε kinases in addition to sequestering viral RNA from detection by RIG-I like receptors. MARV VP40 inhibits STAT1/2 phosphorylation by inhibiting the JAK family kinases. EBOV VP24 inhibits nuclear translocation of activated STAT1 by karyopherin-α. The examples also represent distinct mechanisms utilized by filoviral proteins in order to counter immune responses, which results in limited IFN-α/β production and downstream signaling.
منابع مشابه
Structural basis for Marburg virus VP35-mediated immune evasion mechanisms.
Filoviruses, marburgvirus (MARV) and ebolavirus (EBOV), are causative agents of highly lethal hemorrhagic fever in humans. MARV and EBOV share a common genome organization but show important differences in replication complex formation, cell entry, host tropism, transcriptional regulation, and immune evasion. Multifunctional filoviral viral protein (VP) 35 proteins inhibit innate immune respons...
متن کاملEffects of Filovirus Interferon Antagonists on Responses of Human Monocyte-Derived Dendritic Cells to RNA Virus Infection.
UNLABELLED Dendritic cells (DCs) are major targets of filovirus infection in vivo Previous studies have shown that the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) suppress DC maturation in vitro Both viruses also encode innate immune evasion functions. The EBOV VP35 (eVP35) and the MARV VP35 (mVP35) proteins each can block RIG-I-like receptor signaling and alpha/beta interferon (IFN...
متن کاملA skeptical look at viral immune evasion.
In the past several years, many viral gene products have been found to encode proteins which interfere with immune defense mechanisms. Whether these interactions between virus and immune system components are actually evasion mechanisms used during viral infections in their natural hosts remains to be proven. In vitro studies do, however, reveal several tactics which may aid viral replication a...
متن کاملImmune Evasion by Plasmodium falciparum Parasites: Converting a Host Protection Mechanism for the Parasite’s Benefit
Immune evasion is a strategy used by pathogenic microbes to evade the host immune system in order to ensure successful propagation. Immune evasion is particularly important for the blood stages of Plasmodium falciparum, the causative agent of the deadly disease malaria tropica. Because Plasmodium blood stage parasites require human erythrocytes for replication, their ability to evade attack by ...
متن کاملMechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection
Human papillomavirus (HPV) has developed strategies to escape eradication by innate and adaptive immunity. Immune response evasion has been considered an important aspect of HPV persistence, which is the main contributing factor leading to HPV-related cancers. HPV-induced cancers expressing viral oncogenes E6 and E7 are potentially recognized by the immune system. The major histocompatibility c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011